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Abstract: Traffic state estimation represents one of the important ingredients for 
traffic prediction and forecasting. The work presented in this paper deals with the 
estimation of traffic state variables (density and speed), using the so called Super-
Twisting Sliding Mode Observer (STSM). Several numerical simulations, using 
simulated and real data, show the relevance of the proposed approach. In addition, 
a comparative study with the Extended Kalman Filter (EKF) is carried-out. The 
comparison indices concern convergence and stability, dynamic performance and 
robustness. The design of the two observers is achieved using a nonlinear second 
order traffic flow model in the same highway traffic and geometric conditions. 

Keywords: Super-twisting sliding mode observer, extended Kalman filter, traffic 
flow model. 

1. Introduction 

Real-Time highway traffic management and development of Intelligent 
Transportation Systems (ITS) remain an important area of intensive research in 
order to mitigate the daily problem of congestion and ensure safe and less polluting 
transportation of goods and people. One of the prerequisites for continuous 
prediction is an efficient estimation of the real-time traffic conditions, using only a 
limited amount of data. 
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Currently, traffic data is usually obtained via a set of sensors, such as inductive 
loop detectors which provide occupancy rate and traffic mean speed measurements 
from which other macroscopic quantities can be derived when accurate vehicle 
length is available. These macroscopic quantities include vehicles density (number 
of vehicles per unit length of highway), mean speed (unit length of highway per unit 
of time) and flow. The high cost of installation and maintenance of a large number 
of sensors and the fact that the sets of data provided by the existing detectors are 
often incomplete and noisy, tempted many researchers to develop traffic control 
methods and algorithms based on state estimation techniques [1]. The main solution 
of such problems requires reconstruction of the missing traffic states. The works 
referred to state and/or parameters estimations, using sliding mode technique, are 
few. In K o h a n [2] proposed a robust first order sliding mode observer to estimate 
the traffic state variables (density and mean speed) in a freeway section. It suffered 
from chattering phenomena. In [3] the authors used a sliding mode observer to 
estimate the state variables of a second order traffic flow model in a freeway 
section. The authors have not found more works using a variable structure observer 
in highway traffic domains. On the contrary, they are well studied in the industry 
sector, for example, in robotics [4-6], in electrical engineering [7, 8] or in chemical 
reactors [9]. Notice that the widely used traffic state estimations methods are 
stemming from Kalman filtering techniques. In this context, in K n a p p [10] 
developed a method based on time series of speed and flow data from a set of 
sensors in order to generate vehicles counts. These crude estimates are then filtered 
using Kalman filter. In [11] it was shown how the Cell Transmission Model (CTM) 
can be included in the general Extended Kalman Filtering (EKF) framework, and 
the capability of the combined CTM-EKF model to capture (rapid) changes of 
important modeling parameters like capacity. In [12] an improved mixture of 
Kalman filter algorithm was proposed, which is based on sequential Monte Carlo 
method to solve the difficult problem of interference on a switching state-space 
model with an unobserved discrete state. In [1] the authors used a Mixture of 
Kalman Filtering (MKF) algorithm on the switching-mode traffic model. The 
estimator is able to provide the estimated vehicle densities at unmeasured locations, 
as well as the congestion states (free-flow or congested), which are not directly 
observed. In [13] a real-time estimation of the complete traffic state in freeway 
stretches is developed, based on an extended Kalman filter. In [14] the performance 
of the extended Kalman filter and the unscented Kalman filter for state estimation 
are compared. Generally, the extended Kalman filters are more adapted when the 
set of measurements and model uncertainties are assumed to be white noise with 
normal distributions. In practice this assumption is valid only for traffic 
measurements, and the uncertainties involved in the model equations, such as 
disturbances and modeling errors cannot be simply regarded as white noise. 
Moreover, several difficulties are still persistent with respect to the tuning, the 
numerical analysis and the sensitivity to perturbations. In [2] a short comparison 
between the first order sliding mode observer and EKF was achieved. Generally, 
the first order sliding mode observer was labeled better with respect to EKF. 
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This paper focuses on the closed-loop full order observer techniques and tries 
to give comprehensive comparison of them, including a super-twisting sliding mode 
observer and an extended Kalman filter. It aims at giving a thorough evaluation of 
STSM observer and EKF from several aspects, including state estimation 
(convergence and stability), dynamic performance, parameter and noise sensitivity, 
and complexity. The simulation and experimental results, as well as theory analysis 
are presented to give a comprehensive comparison of them. 

We can summarize the contributions of this paper as follows: 
• Application of the most recent and robust algorithm of sliding mode 

technique (STSM) which is related to Variable Structure Systems (VSS) theory.  
• The simulations are conducted, using real and fictive data. A control system 

is used to verify the stability of the two observer algorithms. 
• Application of some indices in order to conduct a comparative study 

between the proposed algorithm and the extended Kalman Filter. 
The paper is organized as follows: Section II recalls the used macroscopic 

model (METANET). Section III presents the design algorithms for the two 
observers. Section IV introduces the traffic control algorithm. Section V provides 
numerical simulation for a sample network. Section VI concludes the paper and 
outlines some tracks for future developments. 

2. Macroscopic traffic flow model 

The first macroscopic model was developed in [15] and [16] which are based on the 
conservation law: 
(1)   డ

డ೟
,ݔሺߩ ሻݐ ൅ డ

డೣ
,ݔሺݍ ሻݐ ൌ ݃ሺݔ,  ,ሻݐ

where ߩሺݔ, ,ݔሺݍ ,ሻݐ ,ݔሻ and ݃ሺݐ  ሻ are the traffic density in veh/km per lanes, theݐ
traffic volume in veh/h and the ramp generation term in veh/h per 1 km, 
respectively. 

Equation (1) is supplied by ሺݔ, ሻݐ ൌ ,ݔሺߩ ,ݔሺݒሻݐ ,ݔሺݒ where ,ߚሻݐ  ሻ is the meanݐ
speed and ߚ is the number of lanes. The mean speed ݒሺݔ,  ሻ and the traffic densityݐ
,ݔሺߩ ,ݔሺݒ ,ሻ are related by a so called fundamental diagramݐ ሻݐ ൌ ܸୣ ሺߩሺݔ,  ሻሻ. Oneݐ
of the most widely used forms of such a function is due to M a y [17] 
(2)   ܸୣ ൫ߩሺݔ, ሻ൯ݐ ൌ ୤ݒ exp ቀെ ଵ

௔
ቀఘሺ௧ሻ

ఘౙ
ቁ

௔
ቁ, 

where ܽ is a parameter, ݒ୤ is the free-flow speed and ߩୡ represents the critical 
density. Such fundamental diagram allows identifying of the free flow and 
congested zones (Fig. 1). 

Since the first order macroscopic model is based on a static relationship 
between the main traffic variables, it presents several drawbacks, such as the 
inability to describe the dynamics of the traffic behavior. In this context, the second 
order models seem to be more adapted. One of these models is the Payne’s model 
[18]. In this section we present a second order traffic flow model proposed in  
[19, 20]. This model represents a freeway network as a directed graph whose links 
are associated with a stretch in the freeway network. Each link in the graph 



 144

corresponds to a stretch that has uniform characteristics. In the model, the m-th link 
of a freeway is divided into n segments. For each link m and segment i, the state 
variables of the traffic as described above are expressed as the average density, the 
mean speed and flow (Fig. 2). The studied freeway segment is then described by the 
following ordinary differential equations for each segment i: 

 
Fig. 1. Fundamental diagram 

 
Fig. 2. Freeway example 
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, 

where: ݎ௜ሺ݇ ሻ  and ݏ௜ሺ݇ሻ are the on-ramp and off-ramp flows, respectively; ߬, ߢ ,ߟ 
and ߜ are the model parameters; ܮ௜  is the length of the segment i; the last term is 
used if there is an on-ramp in the segment to account for the speed drop caused by 
the merging phenomena; ݍ୭೔షభ is calculated as follows [21]: 

୭೔షభݍ  (5)
ሺ݇ሻ ൌ min

ۏ
ێ
ێ
ێ
ۍ ݀୭೔షభ
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ೞ்
,
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ۑ
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where ܳݎ୫ is the on-ramp capacity, ߩ௠ is the maximum (jam) density of the 
segment, ݎ୭೔

ሺ݇ሻ א ሾ0; 1ሿ is the on-ramp metering rate. ݓ୭೔షభ
ሺ݇ሻ is the queue length 

at segment i–1. ݓ୭೔
ሺ݇ሻ ൌ 0 if ݅ ൐ 1, ୱܶ  is the time step, 

୭೔షభݓ  (6)
ሺ݇ ൅ 1ሻ ൌ ୭೔షభݓ

ሺ݇ሻ ൅ ୱܶ ቀ݀୭೔షభ
ሺ݇ሻ െ ୭೔షభݍ

ሺ݇ሻቁ. 

3. Observer design 
 
3.1. Super-twisting sliding mode observer 

The sliding mode technique is related to the Variable Structure Systems (VSS) 
theory. It is essentially based on the resolution of differential equations with a 
discontinuous right hand side which is introduced in [22]. Historically, the twisting 
mode algorithm is the first 2nd order sliding mode algorithm known [23]. It features 
are twisting around the origin of the 2nd order sliding plane. The trajectories 
perform an infinite number of rotations while converging in finite time to the origin 
[24]. In the super-twisting algorithm the trajectories on the 2nd order sliding plane 
are also characterized by twisting around the origin, see Fig. 3. 

 
Fig. 3. Super-twisting algorithm phase trajectory 

3.1.1.  Short overview of the observer 

The sliding mode technique has been used for the observer's design in many 
applications [25-27]. Let us consider a SISO nonlinear system: 

(7)  

ە
ۖ
۔

ۖ
ۓ

ሶଵݔ   ൌ ଶݔ 
ሶଶݔ   ൌ ଷݔ 

ڭ
ሶ௡ିଵݔ ൌ ௡ݔ 

ሶ௡ݔ  ൌ ݂ሺݔଵ, … , ௡ሻݔ
ൌ ݕ ଵݔ  

, 

where ݔ ൌ ሾݔଵ, … , ௡ሿTݔ א  ࣬௡ is the state vector, ݕ ൌ ଵݔ א ࣬ is the output vector. 
The super twisting algorithm based on the step-by-step sliding mode observers is 
designed as follows: 
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ۖ
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ۖ
۔

ۖ
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ۖ
ۖ
ۖ
ۖ
ۓ ොሶଵݔ    ൌ ෤ଶݔ    ൅ |ଵ|݁ଵߣ

భ
మsignሺ݁ଵሻ

෤ሶଶݔ   ൌ ଵ signሺ݁ଵሻߨ  

ොሶଶݔ ൌ ෤ଷݔଵሾܧ ൅ |ଶ |݁ଶߣ
భ
మsignሺ݁ଶሻሿ

෤ሶଷݔ   ൌ ଶ signሺ݁ଶሻߨ ଵܧ  

ොሶଷݔ ൌ ෤ସݔଶሾܧ ൅ |ଷ |݁ଷߣ
భ
మsignሺ݁ଷሻሿ

ڭ
෤ሶ௡ିଵݔ   ൌ ௡ିଶ signሺ݁௡ିଶሻߨ ௡ିଷܧ 

ොሶ௡ିଵݔ ൌ ෤௡ݔ௡ିଶሾܧ ൅ |௡ିଵ |݁௡ିଵߣ
భ
మsignሺ݁௡ିଵሻሿ

෤ሶ௡ݔ   ൌ ௡ିଵ signሺ݁௡ିଵሻߨ ௡ିଶܧ  

ොሶ௡ݔ ൌ ෨ߠ௡ିଵሾܧ ൅ |௡ |݁௡ߣ
భ
మsignሺ݁௡ሻሿ

෨ߠ   ൌ ௡ signሺ݁௡ሻߨ ௡ିଵܧ  

, 

where ݁௜ ൌ ෤௜ݔ െ ݅ ො௜ forݔ ൌ 1, … , ݊, with ݔ෤ଵ ൌ ,෤ݔଵ and ሾݔ ෩ߠ  ሿT ൌ ሾݔ෤ଵ, ,෤ଶݔ … , ,෤௡ݔ  ෨ሿTߠ
is the output of the observer. For ݅ ൌ 1, … , ݊ െ 1, the scalar functions ܧ௜ is defined 
as: ܧ௜ ൌ 1 if ห ௝݁ห ൌ ෤௝ݔ| െ |ො௝ݔ ൑ ݆ for all ,ߝ ൑ ݅ else ܧ௜=0; where ߝ is a small positive 
constant. The observer gains ߣ௜ and ߨ௜ are positive scalars. The convergence of the 
state observation error is obtained in ݊ െ 1 steps and in finite time. The sliding 
mode differentiator of order 2 (super twisting algorithm) is given in its general form 
by [28] (Fig. 4). 

 
Fig. 4. Structure of the super twisting algorithm 

(8)  ∑ ൌ ቊݕሶሺ݁ଵሻ ൌ ଵݕ ൅ |ଵ|݁ଵߣ
భ
మsignሺ݁ଵሻ

ሶଵݕ ൌ ଵsignሺ݁ଵሻߨ
ቋ , ,ଵߣ  ଵߨ  ൐ 0,୭ୠୱ  

where, ߣଵ and ߨଵ are positive tuning parameters of the differentiator whose output is 
 ଵ is the output of the observer. Applying the exact differentiator to systemݕ and ,ݕ
(7) when  ݊ ൌ 2, one obtains: 

ොሶଵݔ  (9)    ൌ ෤ଶݔ  ൅ |ଵ|݁ଵߣ
భ
మsignሺ݁ଵሻ, 

෤ሶଶݔ  (10)   ൌ  ,ଵ signሺ݁ଵሻߨ 
ොሶଶݔ  (11)    ൌ ෨ߠ  ൅ |ଶ|݁ଶߣ

భ
మsignሺ݁ଶሻ, 

෨ሶߠ  (12)   ൌ  .ଶ signሺ݁ଶሻߨ 
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The convergence of the observation error is obtained in one step in finite time. 
Another feature of the differentiators, Equation (8), is the fact that the output does 
not depend directly on discontinuous functions but on an integrator output. 
Therefore, high frequency chattering is attenuated [29]. Both properties are 
important, since the switching function can be obtained in a continuous way without 
delays [30]. See [26, 27, 30-34] for more details and discussions. 

3.1.2. Traffic state estimation 

Consider the following freeway segments shown in Fig. 5. Using the relationship 
between the three aggregated variables (flow ݍ, density ߩ (For simulation purpose, 
the occupancy rate To  which is provided by the loop-detector, is transformed in 
term of traffic density thanks to the following expression: Toൌ 100 ሺܮୠ ൅  ߩ୴ሻܮ
 ୴  are the lengths of the loop detector and the vehicle lengthܮ ୠ andܮ .[35]
respectively.) and the mean speed 
,ݔ௜ሺݍ :ݒ  (13) ሻݐ ൌ ,ݔ௜ሺߩ ,ݔ௜ሺݒሻݐ  .ሻݐ

 
Fig. 5. Freeway segments example 

The output vector is ݕ ൌ ሾݕଵ   ݕଶሿT ൌ ሾߩଶ  ݒଶሿT. The studied freeway section 
(Fig. 5) can be described by the following equations: 
ଵሺ݇ߩ  (14) ൅ 1ሻ ൌ ଵሺ݇ሻߩ ൅ ౩்

௅భ
൫ୣݍሺ݇ሻ ൅ ሺ݇ሻݎ െ  ,ଵሺ݇ሻ൯ݒଵሺ݇ሻߩ

ଶሺ݇ߩ  (15) ൅ 1ሻ ൌ ଶሺ݇ሻߩ ൅ ౩்
௅మ

൫ߩଵሺ݇ሻݒଵሺ݇ሻ െ  ,ଶሺ݇ሻ൯ݒଶሺ݇ሻߩ

ଵሺ݇ݒ  (16) ൅ 1ሻ ൌ ଵሺ݇ሻݒ ൅ ౩்
ఛ

൫ܸୣ ሺߩଵሻሺ݇ሻ െ ଵሺ݇ሻ൯ݒ ൅ 

൅ ୱܶ

ଵܮ
ሺ݇ሻୣݒଵሺ݇ሻ൫ݒ െ ଵሺ݇ሻ൯ݒ െ

ୱܶ ߟ

ଵܮ ߬

൫ߩଶሺ݇ሻ െ ଵሺ݇ሻ൯ߩ
ଵሺ݇ሻߩ ൅ ߢ

െ
ଵሺ݇ሻݒ୭ሺ݇ሻݍ ߜ
ଵሺ݇ሻߩଵሺܮ ൅ ሻߢ

, 

ଶሺ݇ݒ  (17) ൅ 1ሻ ൌ ଶሺ݇ሻݒ ൅ ౩்
ఛ

൫ܸୣ ሺߩଶሻሺ݇ሻ െ ଶሺ݇ሻ൯ݒ ൅ 

൅ ୱܶ

ଵܮ
ଵሺ݇ሻݒଶሺ݇ሻ൫ݒ െ ଶሺ݇ሻ൯ݒ െ

ୱܶ ߟ

ଶܮ ߬

൫ߩ௦ሺ݇ሻ െ ଶሺ݇ሻ൯ߩ
ଶሺ݇ሻߩ ൅ ߢ

, 

where: ߩଶሺ݇ሻ and ݒଶሺ݇ሻ are assumed to be known; ܸୣ ሺ݇ሻߩ௜ሺ݇ሻ are given thanks to 
May’s fundamental diagram; ߩୱሺ݇ሻ is the density of the last segment, if ߩଶሺ݇ሻ ൏   ୡߩ
then ߩୱሺ݇ሻ ൌ ୱሺ݇ሻߩ ଶሺ݇ሻ, if notߩ ൌ  ଶሺ݇ሻ are state variablesݒ ଶሺ݇ሻ andݍ ;ୡߩ
measured thanks to the loop detector located at St. 3; ୣݍሺ݇ሻ and ୣݒሺ݇ሻ (measured at 
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sensor St. 1) are external measured inputs (Fig. 5). Let us assume that the loop 
detector located at St. 2 is broken down. The main objective is then to estimate the 
state variables ߩଵሺ݇ሻ and ݒଵሺ݇ሻ which are of important use for the control system 
from the measured states provided by station St. 3. 

Let ߩ෤ሺ݇ሻ, ߩොሺ݇ሻ and ݒ෤ሺ݇ሻ, ݒොሺ݇ሻ are the estimated values of ߩଵሺ݇ሻ, ߩଶሺ݇ሻ, and 
ଶሺ݇ሻ respectively. Then the observer errors are defined as: ݁ఘሺ݇ሻݒ ,ଵሺ݇ሻݒ ൌ ሺ݇ሻߩ െ
ොሺ݇ሻ and ݁௩ሺ݇ሻߩ ൌ ሺ݇ሻݒ െ  ොሺ݇ሻ. The proposed observer (called super-twisting) hasݒ
the form 
ොଶሺ݇ߩ  (18) ൅ 1ሻ ൌ ොଶሺ݇ሻߩ ൅ ౩்

௅మ
൫ߩ෤ଵሺ݇ሻݒ෤ଵሺ݇ሻ െ ଶሺ݇ሻ൯ݒଶሺ݇ሻߩ ൅ ఘమݖ

ሺ݇ሻ, 
where ߩ෤ଵሺ݇ሻ and ݖఘమ

ሺ݇ሻ are of the form: 
෤ଵሺ݇ሻߩ  (19) ൌ ଶሺ݇ሻߩఘሺ݇ሻsign൫ߨ െ  ,ොଶሺ݇ሻ൯ߩ

ఘమݖ  (20)
ሺ݇ሻ ൌ ଶሺ݇ሻߩ|ఘሺ௞ሻߣ െ |ොଶሺ݇ሻߩ

భ
మ sign൫ߩଶሺ݇ሻ െ  .ොଶሺ݇ሻ൯ߩ

For the speed estimation ݒ෤ଵሺ݇ሻ, ݒොଶሺ݇ሻ the observer reads: 
ොଶሺ݇ݒ  (21) ൅ 1ሻ ൌ ොଶሺ݇ሻݒ ൅ ౩்

ఛ
൫ܸୣ ሺߩଶሻሺ݇ሻ െ ොଶሺ݇ሻ൯ݒ ൅ 

൅ ୱܶ

ଵܮ
෤ଵሺ݇ሻݒොଶሺ݇ሻ൫ݒ െ ොଶሺ݇ሻ൯ݒ െ

ୱܶ ߟ

ଶܮ ߬

൫ߩୱሺ݇ሻ െ ଶሺ݇ሻ൯ߩ
ଶሺ݇ሻߩ ൅ ߢ

൅ ௩మݖ
ሺ݇ሻ, 

෤ଵሺ݇ሻݒ  (22) ൌ ଶሺ݇ሻݒ௩ሺ݇ሻsign൫ߨ െ  ,ොଶሺ݇ሻ൯ݒ

௩మݖ  (23)
ሺ݇ሻ ൌ ଶሺ݇ሻݒ|௩ሺ௞ሻߣ െ |ොଶሺ݇ሻݒ

భ
మ sign൫ݒଶሺ݇ሻ െ  .ොଶሺ݇ሻ൯ݒ

3.2. Extended Kalman filter 

The Kalman filter is a recursive state estimator capable of use of multi-input, multi-
output systems with noisy measurement data and process noise. It uses the plant’s 
input and output measurements together with a state-space model of the system to 
give optimal estimation of the system states. The filter is optimal in the sense that 
the state estimates are based on a performance criterion that minimizes the mean-
square error, defined as the difference between the actual and estimated states. The 
extended Kalman filter is a direct extension of the standard Kalman algorithm to the 
nonlinear system case. In particular, the Kalman gain K is computed on the basis of 
the linearized system at the estimated state ܺ ෡ [36]. In our case, EKF is used to 
estimate the state variables (the mean speed and density) of the traffic flow 
simulation results. 

3.2.1. Short overview on the observer 

EKF algorithm is shown in Fig. 6. The state prediction, state covariance prediction, 
Kalman gain calculation, state covariance update and state estimation update are 
given in the next equations: 
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Fig. 6. EKF algorithm 

(24)  ෠ܺ௞
ା ൌ ݂൫ ෠ܺ௞൯, 

(25)  ௞ܲ
ା ൌ ܣ ௞ܲܣT ൅ ܳ, 

௞ାଵܭ  (26) ൌ ௞ܲ
ାܪ௞ାଵ

T ሺܴ௞ାଵ ൅ ௞ାଵܪ ௞ܲ
ାܪ௞ାଵ

T ሻିଵ, 
(27)  ௞ܲାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲ

ା, 
(28)  ෠ܺ௞ାଵ ൌ ෠ܺ௞

ା ൅ ௞ାଵܭ ቀ ௞ܻାଵ െ ݄൫ ෠ܺ௞
ା, 0൯ቁ, 

where ܪ is the observation matrix, A is the transition matrix, both are Jacobian 
matrices; ݄ is the matrix of estimated values for the measured variables; ݂ is the 
matrix of state equations; ܴ is the measurement noise covariance; ܳ is the process 
noise covariance; ܭ is the Kalman gain, and ܲ is the estimation error covariance; 
௞ܪ  (29) ൌ డ௛

డ௑
| ෠ܺ௞

ା, 

௞ܣ  (30) ൌ డ௙
డ௑

| ෠ܺ௞ିଵ. 

3.2.2. Traffic state estimation  

Herein we consider the same freeway segments shown in Fig. 5. It is the same 
section used by the Super-Twisting Sliding Mode (STSM) observer which let us 
compare these two observers. At first, the initial condition for the state variables 
෠ܺሺ0ሻ and for ܲሺ0ሻ matrix must be introduced. According to the quantity of the 
noise in the measurement and process data, ܴ and ܳ should be tuned, respectively, 
to produce the satisfied result, 
(31)  ෠ܺሺ0ሻ ൌ ሾߩଵሺ0ሻ      ݒଵሺ0ሻ     ߩଶሺ0ሻ     ݒଶሺ0ሻሿT, 
(32)  ܲሺ0ሻ ൌ diagൣ ఘܲభ

ሺ0ሻ      ௩ܲభ
ሺ0ሻ      ఘܲమ

ሺ0ሻ      ௩ܲమሺ0ሻ൧, 

(33)  ܴ ൌ ൤
ܴఘమ 0

0 ܴ௩మ
൨, 
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(34)  ܳ ൌ

ۏ
ێ
ێ
ۍ
ܳఘభ 0 0       0

0 ܳ௩భ 0       0
0
0

0
0

 ܳఘమ

0  
0

ܳ௩మے
ۑ
ۑ
ې
, 

A and H are Jacobian matrices, constructed as follows: 

ܣ  (35) ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

డఘభ
డఘభ

   
డఘభ
డ௩భ

   
డఘభ
డఘమ   

డఘభ
డ௩మ

డ௩భ
డఘభ   

డ௩భ
డ௩భ   

డ௩భ
డఘమ   

డ௩భ
డ௩మ

డఘమ
డఘభ   

డ௩మ
డఘభ

   

డఘమ
డ௩భ   

డ௩మ
డ௩భ

   

డఘమ
డఘమ   

డ௩మ
డఘమ

   

డఘమ
డ௩మ

డ௩మ
డ௩మے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

, 

ܪ  (36) ൌ

ۏ
ێ
ێ
ۍ 0 0 డ௛

డఘమ
0

0 0 0
డ௛
డ௩మے

ۑ
ۑ
ې
, 

where 
ଵሺ݇ߩ  (37) ൅ 1ሻ ൌ ଵሺ݇ሻߩ ൅ ౩்

௅భ
൫ୣݍሺ݇ሻ ൅ ሺ݇ሻݎ െ  ,ଵሺ݇ሻ൯ݒଵሺ݇ሻߩ

ଶሺ݇ߩ  (38) ൅ 1ሻ ൌ ଶሺ݇ሻߩ ൅ ౩்
௅మ

൫ߩଵሺ݇ሻݒଵሺ݇ሻ െ  ,ଶሺ݇ሻ൯ݒଶሺ݇ሻߩ

ଵሺ݇ݒ  (39) ൅ 1ሻ ൌ ଵሺ݇ሻݒ ൅ ౩்
ఛ

൫ܸୣ ሺߩଵሻሺ݇ሻ െ ଵሺ݇ሻ൯ݒ ൅ 

൅ ୱܶ

ଵܮ
ሺ݇ሻୣݒଵሺ݇ሻ൫ݒ െ ଵሺ݇ሻ൯ݒ െ

ୱܶ ߟ

ଵܮ ߬

൫ߩଶሺ݇ሻ െ ଵሺ݇ሻ൯ߩ
ଵሺ݇ሻߩ ൅ ߢ

െ
ଵሺ݇ሻݒ୭ሺ݇ሻݍ ߜ
ଵሺ݇ሻߩଵሺܮ ൅ ሻߢ

, 

ଶሺ݇ݒ  (40) ൅ 1ሻ ൌ ଶሺ݇ሻݒ ൅ ౩்
ఛ

൫ܸୣ ሺߩଶሻሺ݇ሻ െ ଶሺ݇ሻ൯ݒ ൅ 

൅ ୱܶ

ଵܮ
ଵሺ݇ሻݒଶሺ݇ሻ൫ݒ െ ଶሺ݇ሻ൯ݒ െ

ୱܶ ߟ

ଶܮ ߬

൫ߩୱሺ݇ሻ െ ଶሺ݇ሻ൯ߩ
ଶሺ݇ሻߩ ൅ ߢ

, 

and 
(41)  ෠ܺ௞ ൌ ሾߩଵሺ݇ሻ      ݒଵሺ݇ሻ     ߩଶሺ݇ሻ     ݒଶሺ݇ሻሿT, 
(42)  ෠ܺ௞

ା ൌ ሾߩଵሺ݇ ൅ 1ሻ      ݒଵሺ݇ ൅ 1ሻ     ߩଶሺ݇ ൅ 1ሻ     ݒଶሺ݇ ൅ 1ሻሿT. 

4. Simulation results 

For the comparison studies of the two observer (Super-twisting sliding mode STSM 
and extended Kalman filter EKF), the theoretical results are illustrated by some 
simulations. We consider the same example of the stretch depicted in Fig. 5, and we 
assume that the loop detector at St. 2 is broken down. Thus, in order the control 
system not be disrupted, the state variables (ߩଵ and ݒଵ) have been estimated from 
the measured state variables (ߩଶ and ݒଶ) at St. 3. The origin and ramp traffic flow 
used in the simulation are shown in Fig. 7. The model parameters are given in  
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Table 1. For the simulation purpose, MATLAB programming language and 
Simulink have been used. 

 
Fig. 7. Origin and ramp traffic flow used in the simulation: Main flow (upper line) and Ramp flow 

(low line) 

Table 1. Parameters of the model 
Parameter Value Parameter Value 
Free-flow speed 112 km/h η 0.2 
Jam density 180 veh/km к 35 veh/km 
Critical density 35.86 veh/km a 1.40 
L1, L2 100 m τ 28.08 s 
δ 0.17 m/veh  

As a control algorithm, ALINEA is used. It is a first feedback control used in 
freeway traffic control [37, 38]. It is very well known by the highway traffic 
community. Here, ALINEA is only used to check the stability and convergence of 
the two observers (STSM and EKF). 

4.1. Convergence and stability 

In this section there is no parameter uncertainty. It is supposed that the model 
reflects 100% the reality and no external noise is present. The STSM observer gains 
are ߨ௩ ൌ 0.2, ఘߨ ൌ 2.2 ൈ 10ିସ, ௩ߣ ൌ 9 ൈ 10ିଷ and  ߣఘ ൌ 10ିଶ, and  ܳ, ܴ, ݔො and 
ܲሺ0ሻ matrices of EKF are set as: 

ܳ ൌ diagሾ10ିସ    10ିସ    10ିଵ    10ିଵሿ, ܴ ൌ 10ି଺ diag ሾ1   1ሿ, 
ොሺ0ሻݔ ൌ ሾ8 ൈ 10ିଷ    10.4    8 ൈ 10ିଷ    10.4ሿT, 

ܲሺ0ሻ ൌ diagሾ10ିସ     10ିସ    10ିସ     10ିସሿ. 
In this section, in order to verify the degree of convergence of the two 

observers, (the initial conditions of the state variables ݒ and ߩ of the model are 
different with respect to the initial conditions of the state variables ݒ and ߩ) of the 
observers. For the model ߩ୧୬ ൌ 10 veh/km and ݒ୧୬ ൌ 46.8 km/h. For the two 
observers ߩ୧୬ ൌ 8 veh/km and ݒ୧୬ ൌ 37.44 km/h. Fig. 8 shows a comparison 
between the control value using the simulated data and the control value using 
STSM and EKF, respectively. 

From this figure we can see that both observers converge rapidly and the 
control values are quite stable and can steer the system without difficulty. 
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Generally, one can note that the system with EKF is considerably more stable and 
converges better with respect to STSM. 

 
Fig. 8. Comparison of the control value using: STSM observer and simulated values (top), EKF and 

simulated values (bottom) 

From these results, the convergence and stability of the two types of observers 
in terms of density and mean speed are reasonably similar under the ideal 
conditions of no model and parameter uncertainty, and no measurement noise  
(Figs 9 and 10). 

Fig. 9. Section 1: Simulated and estimated 
density, using STSM (top); simulated and 

estimated density, using EKF (bottom)

Fig. 10. Section 1: Simulated and estimated mean 
speed, using STSM (top); simulated and 

estimated mean speed, using EKF (bottom) 
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4.2. Performance 

To investigate the efficiency of the proposed STSM observer and compare it to 
EKF, it proves to be more informative to perform a number of experimental 
scenarios and verify the observers performance in real-life conditions rather than 
present simulation results. For this purpose we considered data collected on the 
M42 motorway in the United Kingdom. The identified values for the parameters of 
the system, given in Table 1, are used in the implementation of the observers. The 
STSM observer gains are ߨ௩ ൌ 0.7, ఘߨ  ൌ 10ିଷ, ௩ߣ ൌ 0.1, ఘߣ ൌ 1.7 ൈ 10ିଶ. For 
EKF, ܴ and ܳ matrices were tuned to minimize the estimated error. It is initialized 
at ݔො and ܲሺ0ሻ for all experiments; 

ܳ ൌ 10ିଷdiagሾ10ିଷ    1     1     1ሿ,           ܴ ൌ 10ିସdiagሾ0.1     10ሿ, 
ොሺ0ሻݔ ൌ ሾ2.5    96    2.5    96ሿT,        ܲሺ0ሻ ൌ diagሾ10ିସ     10ିସ     10ିସ     10ିସሿ. 

Figs 11-14 show the estimation of the density and mean speed using the STSM 
observer and the EKF, as well as the measured data from the detector stations 7 and 
8, for the period between 6 a.m.-22 p.m. in October and November of 2008. Both 
estimators describe the traffic density and mean speed with satisfactory accuracy. 
EKF makes better estimations of the density and mean speed than STSM in both 
stations.  

 

Fig. 11. Measured and estimated density using 
STSM. Section 1 (top), section 2 (bottom) 

Fig. 12. Measured and estimated mean speed 
using STSM. Section 1 (top), section 2 
(bottom)
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Fig. 13. Measured and estimated density using 

EKF. Section 1 (top), section 2 (bottom) 

 
Fig. 14. Measured and estimated mean speed 

using EKF. Section 1 (top), section 2 (bottom) 

The accuracy of EKF’s performance depends significantly on the accuracy of 
Q and R matrices, as these matrices determine the Kalman gain ܭ௙ and the final 
value of the estimation error covariance matrix. It must be noted that the time step 
of the real data is 6 minutes which is relatively large. The accuracy of STSM can be 
improved by decreasing the step time. Thus, if the time step is reduced, a better 
result of STSM can be achieved. To quantify the difference in the performance, we 
computed RMSD [39] for the estimated errors in density and the mean speed at 
stations 7 and 8, which is a good measure of accuracy, defined as 

(43)  RMSD ൌ  ට∑ ሺ௫ೖି௫ොೖሻమ೙
ೖసభ

௡
, 

where: RMSD is the square root of the mean of the squares of the deviations; ݔො௞ is 
the estimated value of the variable ݔ for time ݇; ݔ is the measured value; ݊ is the 
number of samples. Table 2 summarizes these results. While both estimators show 
similar results, EKF provides smaller values for RSMD௩ and RSMDఘ than for 
STSM.  

Table 2. RMSD of density and mean speed for the two estimator 
Estimator STSM EKF 

v1 5.46 2.84 
v2 4.74 2.5 
ρ1 4 4.2 
ρ2 3.7 2 

ρ in veh/km, v in km/h 
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4.3. Parameter sensitivity  

Our model is time-varying. The values of its parameters cannot be fixed exactly. 
Therefore, there is uncertainty with respect to the parameters and the accuracy of 
the model. Here, to investigate the robustness, the sensitivity of the two estimators 
with respect to the parameter variations is found. Consider the cost function 
(44)  ܷሺ׎ሻ ൌ ܷ௩ሺ׎ሻ ൅ ఙೡ

ఙഐ
ఘܷሺ׎ሻ, 

where ׎ ൌ  ൧, ܷ௩ and ఘܷ are the standard deviations ofߜ     ߢ     ௖ߩ     ௙ݒ     ߟ   ߬   ܽൣ
the mean velocity error and density error, respectively, and ߪ௩ and ߪఘ are the 
standard deviations of the measured mean speed and density. Conceptually, the 
simplest method to sensitivity analysis is to repeatedly vary one parameter at a time 
while holding the others fixed. A sensitivity ranking can be obtained quickly by 
increasing each parameter by a given percentage, while leaving all the others 
constant and quantifying the change in the model output. This type of analysis has 
been referred to as a “local” sensitivity analysis, since it addresses only sensitivity 
relative to the point estimates chosen and not for the entire parameter distribution 
[40]. The parameters of the model are changed about the nominal parameter set ഥܷ, 
defined in Table 1, one at a time within the range 0.8 ߶ത௜ ൏ ௜׎ ൏ 1.2 ߶ത௜ while all 
other parameters are kept at their nominal (identified) values. Herein we consider 
the normalized deviation in the cost function ܷ from its nominal value, which is the 
most direct and linear way to quantify the changes [2]: 

(45)  % change ൌ  ሺ௎ሺ׎ሻି௎ሺ׎ഥሻሻ
௃ሺ׎ഥሻ

ൈ 100. 

In Fig. 15, the percentage of changes for each parameter are plotted, calculated by 
that equation. Note that EKF is more sensitive to changes in ݒ୤, ߬, ߜ and 
 ܽ ୡ andߩ ,ߟ compared to STSM. In contrast, STSM is more sensitive to changes in ߢ
compared to EKF.  

  
Fig. 15. Parameter sensitivity, STSM “––”, EKF “- - -” 
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5. Conclusion 

This paper presents a comprehensive comparison of two kinds of observers: STSM 
and EKF. The simulations are established with simulated and real data. The real 
data are collected on M42 motorway in the United Kingdom. For the simulation, a 
second order traffic flow model METANET has been used. The STSM, which 
behaves like a full order observer, and the structure of EKF have been presented. 
The following conclusions can be stated: 

STSM can perform as well as EKF. The robustness of the STSM to external 
noise can be guaranteed. In contrast, the EKF should be tuned with respect to the 
external noise. It means that EKF is not robust with respect to the external noise, for 
accurate values of the input and measurement noise covariance matrices ܳ and ܴ 
are required. 

The performance of EKF in the sense of convergence and stability is better 
than STSM when the covariance matrices (ܳ and ܴ) are well tuned. STSM suffers 
from the chattering behavior. However, STSM can steer satisfactorily the system. 

STSM is the best choice compared to the EKF, since the estimation results are 
comparable to EKF, especially, where a small time step is taken. It is much simpler 
to implement, the dynamic performance can be altered and no knowledge of the 
noise statistics is required. 

R e f e r e n c e s 

1. S u n, X., L. M u n o z, R. H r o w i t z. Mixture Kalman Filter Based Highway Congestion Mode 
and Vehicle Density Estimator and its Application. – In: Proc. of American Control 
Conference, 2004, pp. 2098-2103. 

2. K o h a n, R. R. Robust State Estimation and Control of Highway Traffic Systems. Toronto, 
Electrical and Computer Engineering, University of Toronto, 2001. 

3. M a j i d, H., H. A b o u a i s s a, D. J o l l y, G. M o r v a n. State Reconstructor for Real-Time 
Freeway Ramp Metering. – In: ICNSC, 2013, pp. 306-311. 

4. C a n u d a s  d e  W i t, C., J. J. E. S l o t i n e. Sliding Observers in Robot Manipulators. – 
Automatica, Vol. 27, 1991, pp. 859-864. 

5. H e r n a n d e z, J., J.-P. B a r b o t. Sliding Observer-Based Feedback Control for Flexible Joints 
Manipulator. – Automatica, Vol. 32, 1996, pp. 1243-1254. 

6. M a n a m a n n i, N., M. D j e m a i, T. B o u k h o b z a, N. M’S i r i d i. Nonlinear Sliding 
Observer Based Control for a Pneumatic Robot Leg. – Int. J. of Robotics and Automation, 
Vol. 16, 2001, pp. 100-112.  

7. U t k i n, V. I., J. G u l d n e r, J. S h i. Sliding Mode Control in Electromechanical Systems. 
London, Taylor and Francis, 1999.  

8. D j e m a i, M., J.-P. B a r b o t, A. G l u m i n e a u, R. B o i s l i v e a u. Non-Linear Flux Sliding 
Mode Observer. – In: Proc. of IEEE CSCC99, IMACS, Athens, Greece, 1999.  

9. M a r t i n e z-G u e r r a, R., R. A g u i l a r-L o p e z, A. P o z n y a k. Robust Sliding Mode 
Observers for On-Line Reaction Heat Monitoring in Continuous Chemical Reactors. – 
ASME Journal of Dynamics Systems, Measurment and Control, Vol. 126, 2004,  
pp. 473-478. 

10. K n a p p, C. H. Traffic Estimation and Density Estimation for Single and Multi-Lane Traffic. –
Transportation Science, Vol. 7, 1973, pp. 75-84.  

11. C h r i s, M., J. T q m p è r e, L. H. I m m e r s. An Extended Kalman Filter Application for Traffic 
State Estimation Using CTM with Implicit Mode Switching and Dynamic Parameters. 2007. 



 157

12. S u n, X., L. M u n o z, R. H o r o w i t z. Highway Traffic State Estimation Using Improved 
Mixture Kalman Filters for Effective Ramp Metering Control. – In: Proc. of Conference on 
Decision and Control, 2003.  

13. W a n g, Y., M. P a p a g e o r g i o u. Real-Time Freeway Traffic State Estimation Based on 
Extended Kalman Filter: A General Approach. – Transportation Research Part B, Vol. 39, 
2005, pp. 141-167.  

14. H e g y i, A., D. G i r i m o n t e, R. B a b u s k a, B. d e  S c h u t t e r. A Comparison of Filter 
Configurations for Freeway Traffic State Estimation. – In: Proc. of 2006 IEEE Intelligent 
Transportation Systems Conference (ITSC’2006), Toronto, Canada, 2006, pp. 1029-1034. 

15. L i g h t h i l l, M. J., G. B. W h i t h a m. On Kinematic Waves II: A Theory of Traffic Flow in 
Long Crowded Roads. – Proc. Royal Soc. London, Vol. A-229, 1955, pp. 317-345. 

16. R i c h a r d s, P. I. Shock Waves on the Highway. – Operations Research, Vol. 4, 1956, pp. 42-51. 
17. M a y, A. D. Traffic Flow Fundamentals. Englewood Cliffs, Prentice Hall, NJ, 1990.  
18. P a y n e, H. J. Models of Freeway Traffic and Control. – In: G. A. Bekey, Ed. Mathematical 

Models of Public Systems. Vol. 1. Simulation Council Procceedings Series. La Jolia 
California, 1971, pp. 51-61. 

19. M e s s e m e r, A., M. P a p a g e o r g i o u. METANET: A Macroscopic Simulation Program for 
Motorway Networks. – Traffic Engineering and Control, Vol. 31, 1990, No 9, pp. 446-470.  

20. M e s s n e r, A., M. P a p a g e o r g i o u. METANET – A Simulation Program for Motorway 
Networks. –Traffic Engineering and Control, Vol. 31, 1990, No 8-9, pp. 466-470. 

21. L a m o n, F. Freeway Traffic Modeling and Calibration for the Eindhoven Network. Master’s 
Thesis, Delft University of Technology. Delft Center for Systems and Control, 2008. 

22. F i l l i p o v, A. F. Differential Equaitons with Discontinous Right-Hand Side. – American 
Mathematics Society Transactions, Vol. 62, 1960, pp. 199-231. 

23. F l o q u e t, T. Contributions à la commande par modes glissants d’ordre supèrieures. PhD Thesis, 
Université des Sciences et Techniques de Lille, 2000. 

24. R o l i n k, M., T. B o u k h o b z a, D. S a u t e r. High Order Sliding Mode Observer for Fault 
Actuator Estimation and Its Application to the Three Tanks Benchmark. In Author 
Manuscript, 2006.  

25. S o l v a r, S., V. L e, M. G h a n e s, J.-P. B a r b o t, G. S a n t o m e n n a. Observateur à mode 
glissant d’ordre 2 pour la machine asynchrone sans capteur mécanique. In Author 
Manuscript, Published in CIFA, Nancy, France, 2010. 

26. S a l g a d o, I., I. C h a i r e z, J. M o r e n o, L. F r i d m a n, A. P o z n y a k. Generalized Super-
Twisting Observer for Non Linear Systems. – In: Preprints of the 18th IFAC World Congress 
Milano (Italy), 28 August-2 September 2011, pp. 14353-14358. 

27. R a b h i, A., N. K. M’S i r d i, M. O u l a d s i n e, L. F r i d m a n. Estimation of Road Profile 
Using Second Order Sliding Mode Observer. In Authour Manuscript, 2010.  

28. F r i d m a n, L., A. L e v a n t. Sliding Modes of Higher Order as a Natural Phenomenon in Control 
Theory. Technical Report. – In: Robust Control via Variable Structure and Lyapunov 
Techniques. Lecture Notes in Control and Information Science, Vol. 217. F. Garofalo, L. 
Glielmo, Eds. London, Springer Verlag, 1996, pp. 107-133.  

29. D j e m a i, M., N. M a n a m a n i, J.-P. B a r b o t. Sliding Mode Observer for Triangular Input 
Hybrid System. – In: Proc. of IFAC World Congress Prague, 2005. 

30. F l o q u e t, T., J.-P. B a r b o t. Super Twisting Algorithm Based Step-By-Step Sliding Mode 
Observers for Nonlinear Systems with Unknown Inputs. – International Journal of Systems 
Science, Vol. 38, 2007, No 10, pp. 803-815.  

31. D a v i l a, J., L. F r i d m a n, A. L e v a n t. Second-Order Sliding Mode Observer for Mechanical 
Systems. – IEEE Transactions on Automatic Control, Vol. 50, 2005, No 11, pp. 1785-1789. 

32. M’S i r d i, N. K., A. R a b h i, L. F r i d m a n, J. D a v i l a, Y. D e l a n n e. Second Order Sliding 
Mode Observer for Estimation of Velocities, Wheel Sleep, Radius and Stiffness. – Int. J. 
Vehicle Design, Vol. 48, 2008, No 3/4.  

33. S a a d a o u i, H., M. D j e m a i, N. M a n a m a n n i, K. B e m a n s o u r. Super Twisting 
Algorithm Observer for a Class of Switched Chaotic Systems. In Authour Manuscript, 2010.  

34. M’S i r d i, N. K., A. R h b h i, L. F r i d m a n, J. D a v i l a, Y. D e l a n n e. Second Order Sliding-
Mode Observer for Estimation of Vehicle Dynamic Parameters. – Int. J. Vehicule Design, 
Vol. 48, 2008, No 3/4, pp. 190-207. 



 158

35. B u i s s o n, C., J. L e s o r t. Comprendre le trafic routier Méthodes et Calculs. Certu, 2010. 
36. C h e n, F., M. W. D u n n i g a n. Comparative Study of a Sliding-Mode Observer and Kalman 

Filters for Full State Estimation in an Induction Machine. – IEE Proc. Electr. Power Appl., 
Vol. 149, 2002, No 1, pp. 53-64.  

37. P a p a g e o r g i o u, M., H. H a d j-S a l e m, J. B l o s s e v i l l e. Alinea: A Local Feedback 
Control Law for On-Ramp Metering. Transportation Research Record, Vol. 1320, 1991,  
pp. 58-64. 

38. P a p a g e o r g i o u, M., H. H a d j-S a l e m, F. M i d d l e h a m. Alinea Local Ramp Metering : 
Summary of Fields Results. – Transportation Research Record, Vol. 1603, 1997, pp. 90-98.  

39. B a r r e t o, H., F. M. H o w l a n d. Introductory Econometrics Using Monte Carlo Simulation with 
Microsoft Excel. Cambridge, 2006. 

40. H a m b y, D. M. A Review of Techniques for Parameter Sensitivity Analysis of Environmental 
Models. – Environmental Monitoring and Assessment, Vol. 32, 1994, pp. 135-154. 

41. M a j i d, H., H. A b o u a i s s a, D. J o l l y, G. M o r v a n. A Reduced Order Observer for 
Switching-Mode Model State Estimation. – In: Proc. of International Conference on Control, 
Decision and Information Technologies (CoDIT), Hammamet, 2013. 

42. M a j i d, H. Gestion du trafic autoroutier: contribution à l’estimation et à la commande des 
systèmes de transport intelligents. Presses Académiques Francophones, 2015. 

 


